2023 MATHCAMP RESEARCH PROJECTS: LINEAR ALGEBRA

LECTURER: BONG H. LIAN

This is a preliminary version of the research projects, subject to change later.

0. Basic Assumptions and Notations

Unless stated otherwise, we shall make the following assumptions and use the following notations. F will denote a field of characteristic zero (i.e. F contains \mathbb{Z} as a subset). You may find it much easier to think about the case $F=\mathbb{R}$ or \mathbb{C}, the field of real or complex numbers. A vector space means a finite dimensional F-vector space, usually denoted by U, V, W, \ldots. Likewise a linear map means an F-linear, and an F-matrix means a matrix with entries or coefficients in F. Put

$$
\begin{aligned}
& \operatorname{Hom}(U, V):=\{\text { linear maps } U \rightarrow V\} \\
& \operatorname{End} V:=\operatorname{Hom}(V, V) \text {, the algebra of linear maps } V \rightarrow V \\
& \operatorname{Aut} V:=\{f \in \operatorname{End} V \mid f \text { is bijective }\} \\
& \text { Aut }_{n} F:= \text { Aut } F^{n} \\
&\left(M_{n}, \times\right) \equiv M_{n} \equiv M_{n, n}(F):=\text { the algebra of } n \times n \text { matrices } \\
& \text { with the usual matrix product } \\
& I \equiv I_{n}:=\left[e_{1}, . ., e_{n}\right], \text { the identity matrix in } M_{n}
\end{aligned}
$$

We usually denote composition of maps as $f g \equiv f \circ g$.
These objects will be introduced and studied in class during the first two weeks.

1. Statements of Problems in Project 1

Problem 1.1.

(a) Describe all possible solutions to the matrix equation system

$$
x_{1}^{2}=x_{1}, \quad x_{2}^{2}=x_{2}, \quad x_{1} x_{2}=x_{2} x_{1}=0
$$

in two variables in M_{2}, up to conjugation by Aut_{2}.
(b) Describe all those conjugation classes that satisfy the additional equation

$$
x_{1}+x_{2}=I_{2} .
$$

(c) Describe all possible two-sided ideals of M_{2}.

We saw in class that the algebra M_{n} itself is an M_{n}-space on which M_{n} acts by left multiplication. We also saw that an F-subspace $W \subset M_{n}$ is an M_{n}-subspace iff W is a left ideal of M_{n}.

Problem 1.2.

(a) Describe all possible left ideals I of M_{2}. Which ones of them are isomorphic to each other?
(b) Classify all minimal M_{2}-spaces V up to isomorphisms.
(c) Classify all M_{2}-spaces V up to isomorphisms.

Problem 1.3. Generalize both Problems 1.1 and 1.2 to M_{n}-spaces for all n.

2. Statements of Problems in Project 2

Let \mathcal{U}_{n} be the set of $n \times n$ upper triangular complex matrices. As an easy exercise, you should verify that \mathcal{U}_{n} forms a subalgebra of M_{n}.
Problem 2.1. Classify all minimal \mathcal{U}_{2}-spaces.
Problem 2.2. Classify all minimal \mathcal{U}_{3}-spaces.
Problem 2.3. Classify all minimal \mathcal{U}_{n}-spaces, for each n.

