2023 MATHCAMP RESEARCH PROJECTS: LINEAR ALGEBRA

LECTURER: BONG H. LIAN

This is a preliminary version of the research projects, subject to change later.

0. Basic Assumptions and Notations

Unless stated otherwise, we shall make the following assumptions and use the following notations. F will denote a field of characteristic zero (i.e. F contains \mathbb{Z} as a subset). You may find it much easier to think about the case $F = \mathbb{R}$ or \mathbb{C} , the field of real or complex numbers. A vector space means a finite dimensional F-vector space, usually denoted by U, V, W, \dots Likewise a linear map means an F-linear, and an F-matrix means a matrix with entries or coefficients in F. Put

```
\operatorname{Hom}(U,V) := \{ \text{linear maps } U \to V \}
\operatorname{End} V := \operatorname{Hom}(V,V), \text{ the } algebra \text{ of linear maps } V \to V
\operatorname{Aut} V := \{ f \in \operatorname{End} V | f \text{ is bijective} \}
\operatorname{Aut}_n F := \operatorname{Aut} F^n
(M_n,\times) \equiv M_n \equiv M_{n,n}(F) := \text{ the algebra of } n \times n \text{ matrices}
\text{with the usual matrix product}
I \equiv I_n := [e_1,..,e_n], \text{ the identity matrix in } M_n
```

We usually denote composition of maps as $fg \equiv f \circ g$.

These objects will be introduced and studied in class during the first two weeks.

2

1. Statements of Problems in Project 1

Problem 1.1.

(a) Describe all possible solutions to the matrix equation system

$$x_1^2 = x_1, \quad x_2^2 = x_2, \quad x_1 x_2 = x_2 x_1 = 0$$

in two variables in M_2 , up to conjugation by Aut_2 .

(b) Describe all those conjugation classes that satisfy the additional equation

$$x_1 + x_2 = I_2.$$

(c) Describe all possible two-sided ideals of M_2 .

We saw in class that the algebra M_n itself is an M_n -space on which M_n acts by left multiplication. We also saw that an F-subspace $W \subset M_n$ is an M_n -subspace iff W is a left ideal of M_n .

Problem 1.2.

- (a) Describe all possible left ideals I of M_2 . Which ones of them are isomorphic to each other?
- (b) Classify all minimal M_2 -spaces V up to isomorphisms.
- (c) Classify all M_2 -spaces V up to isomorphisms.

Problem 1.3. Generalize both Problems 1.1 and 1.2 to M_n -spaces for all n.

2. Statements of Problems in Project 2

Let \mathcal{U}_n be the set of $n \times n$ upper triangular complex matrices. As an easy exercise, you should verify that \mathcal{U}_n forms a subalgebra of M_n .

Problem 2.1. Classify all minimal U_2 -spaces.

Problem 2.2. Classify all minimal U_3 -spaces.

Problem 2.3. Classify all minimal U_n -spaces, for each n.